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The critical isotherm of the mixed spin Ising model 
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Department of Applied Mathematics and Theoretical Physics, University of Liverpool, 
PO Box 147, Liverpool L69 3BX, UK 

Received 28 April 1983 

Abstract. Series expansions are used to estimate the critical exponent 6 for several two- 
and three-dimensional mixed spin Ising models. The evidence supports the conjecture of 
extended spin independence. This suggests that our mixed spin models and the standard 
'single spin' models share the same value of 6.  

Series expansion studies of mixed spin Ising models have until now been restricted 
to the high-temperature regime (Schofield and Bowers 1981). In order to study the 
shape of the critical isotherm in such models, we have derived initial terms in the 
high-field expansion 

of the reduced magnetisation M. Here the variables U =exp(-2J/kT) and p = 
exp(-mH/kT) relate to the Hamiltonian 

in which the notation is standard. This Hamiltonian applies to loose packed lattices 
in which one sublattice is inhabited by spin-f objects (vi = *$) and the other by spin-1 
objects (si = *l ,  0). For the honeycomb (HC) lattice the first ten ferromagnetic 
polynomials gn (U) have been obtained by generalising the 'code method' described 
by Sykes et af (1965). For the plane square (sa), simple cubic (sc), and body centred 
cubic (BCC) lattices, the first seven of these polynomials have been derived in the 
same way. (Symmetry is lost because the magnetic sublattices are not identical. This 
means that the effort needed to reach a given order in (1) is about twice that for the 
corresponding 'single spin' models.) 

Our analysis is based on the series 

obtained from (1) by setting U equal to its critical value uc.  For the critical value we 
have used 

U, = 0.219 8334 (HC), U, = 0.3588 * 0.0025 ( S a ) ,  

uc = 0.5904*0.0035 (sc), U, = 0.6866* 0.0007 (BCC). (4) 
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The first of these follows from the exact result which can be obtained using the 
star-triangle transformation (Fisher 1959, Yousif 1983). The remainder are estimates 
which correspond to those obtained after making a few corrections to the high- 
temperature series expansion analyses of Schofield and Bowers (1981). In table 1 we 
present the coefficients d ,  which we have obtained for the four lattices. For the HC 

lattice, the above value of U, is used. For the other lattices, to save space, the 
coefficients are given only for the central value of the estimates at (4). 

Table 1. Magnetisation isotherm coefficients d ,  f o r  two- and three-dimensional lattices. 

n HC SO sc BCC 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

0.056 848 0.072 655 0.124 075 0.135 813 
0.016 914 0.023 401 0.056 561 0.063 5 5 5  
0.013 975 0.014 609 0.035 768 0.031 663 
0.01 1 267 0.011 002 0.025 594 0.026 156 
0.008 7 15 0.008 362 0.019 580 0.019 784 
0.006 799 0.006 953 0.015 265 0.015 842 
0.005 677 0.005 841 0.013 085 0.014 955 
0.004 948 
0.004 557 
0.004 137 

As in the 

~ ~~ 

case with spin-: (Gaunt and Sykes 1972) and spin-1 (Fox and Gaunt 
1972) Ising ferromagnets, the available coefficients d ,  are positive for all lattices in all 
cases, One expects that the series (3) converges up to the critical point p = 1 ( H  = 0). 
The intention is to estimate the critical exponent S which satisfies the condition 
M - (1  -p ) l ”  as p + 1-. There are several methods which can be tried. The most 
successful of these are the Pad6 approximant (PA) method (Baker 1961) and a method 
due to Gaunt (1967) which uses the coefficients in the series expansion of the 
logarithmic derivative of M c ( p ) .  

In table 2 we give estimates for S obtained by evaluating PAS to (1 - p )  x 
(d ldp)  In M c ( p )  at p = 1 using the series of table 1 .  For the SQ, sc and BCC lattices 
we have obtained such tables for other values of U, in the ranges (4). There is no 
space to give them but they are very similar, for each lattice, to the appropriate 
part of table 2. From all this evidence we estimate 

8 = 15.3*0.5 (HC), 8 = 14.9* 0.9 (SQ), 

S = 5.25 * 0.45 (sc), S = 5.2 * 0.3 (BCC). 

Gaunt’s (1967) method employs the series for 

n > O  

whose coefficients should approach 1/6 as n + W .  This approach leads to the most 
consistent results for the spin-; (Gaunt 1967, Gaunt and Sykes 1972) and spin-1 (Fox 
and Gaunt 1970, 1972) Ising ferromagnets. Here, as in the above cases, the values 
obtained for the coefficients c,, are always positive. In table 3, we present those values 
of l/c, which follow from the series of table 1. These are estimates of 6. Again 
similar results are found, for the SQ, sc and BCC lattices, when the series of (1)  are 
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Table 2. Estimates for 8 provided by evaluating the [D, NI PAS to (1 - + ) ( d / d p )  In M&) 
series at g = 1 for two- and three-dimensional lattices. 

HC 

1 
2 
3 
4 
5 
6 
7 
8 

1 2 3 4 5 6 7 8 

17.154 13.428 14.984 14.818 16.055 15.887 15.934 14.903 
17.666 15.217 15.826 15.603 15.809 16.172 15.700 
14.060 15.600 15.623 15.697 15.647 15.438 
14.934 15.622 15.594 15.653 15.759 
12.814 15.749 15.649 15.620 
16.257 15.342 15.491 
16.011 15.529 
21.653 

SQ 

N 1  2 3 4 5 

1 14.730 14.452 14.544 14.764 14.799 
2 14.388 14.571 15.814 14.879 
3 11.969 14.839 14.893 
4 14.723 14.885 
5 13.873 

sc 

2 3 4 5 
>,N 

1 5.184 5.213 5.243 5.294 5.303 
2 5.212 5.089 5.208 5.302 
3 5.242 5.208 5.170 
4 5.272 5.293 
5 5.303 

BCC 

2 3 4 5 AN 
~~~ ~~~ 

1 5.233 5.295 5.062 5.194 5.065 
2 5.293 5.253 5.030 5.064 
3 5.119 4.924 5.374 
4 5.059 5.156 
5 5.477 

replaced by series obtained using different estimates of uc within the ranges (4). From 
all this evidence we estimate 

S = 15.4*0.5 (HC), 8 = 14.9* 0.9 (SQ),  

S = 5.3 * 0.4 (sc), 8 =5.1*0.5 (BCC). (7) 
These are in good agreement with the estimates ( 5 ) .  
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Table 3. Estimates of 6 as calculated from l/c,  for two- and three-dimensional lattices. 

n HC SQ sc BCC 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

13.193 10.323 6.045 5.522 
19.666 13.930 5.612 4.944 
16.270 14.617 5.405 5.598 
14.857 14.403 5.307 5.086 
14.998 14.831 5.269 5.064 
15.685 14.752 5.349 5.037 
15.929 14.872 5.244 4.631 
15.879 
15.317 
15.082 

It seems clear that, as expected, S depends on dimensionality but not on lattice 
structure. With this assumed, the above estimates may be combined to give 

S = 15.25 f 0.35 (two dimensions), S = 5.20 f 0.25 (three dimensions). (8) 

When one compares these with the results of the above references for the spin-; and 
spin-1 Ising ferromagnets, the evidence for an extended form of spin independence 
is rather good. This is consistent with the view (Schofield and Bowers 1981) that 
mixed spin Ising models-which, it should be noted, are capable of a particular form 
of uniaxial ferrimagnetism-belong to the same universality class as the single spin 
models although they have markedly different translational symmetry. 
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